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‘NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORARDUM NO. 1188

‘THE ELASTO-PTASTIC STABILITY OF PLATES*

By A. K. TIlyushin

In this article are developed the results of my work (reference 1)

"The Stability of Plates and Shells beyond the Elastic Limit." A
significant improvement ig found in the derlvation of the relations .
between the stress factors and the strains resulting from the
ingtability of plates and shells. In a strict analyesis the problem
reduces to the solution of two simultaneous nonlinear partial differ—
entlal equations of the fourth order in the deflection and stress
function, and in the approximate analysis to a single linear equa—
tion of the Bryan type. Solutions are glven for the speclal cases
of a rectangular plate buckling into a cylindrical form, and of an
arbitrarily shaped plate under uniform compression. These solutions
indicate that the accuracy obtained by the approximate method is

. satisfactory.

1, EXPRESSIONS FOR THE FORCES AND MOMENTS IN TERMS

OF THE STRATNS IN THE MIDDLE SURFACE

. Ona moveﬁble Darboux trihedron, relative to which we shall
studv the element of the shell, we choose the xy plane to be
tangent to the middle surface, and the x and y directions
along orthogonal curves (fig. 1).

The state of stregs of the element is determined by'the

tensor of the stress S. Its components Zy s Zy, Zx’ are

small compared to Xx’ Y&, and Xy, that ls, each layer of the -
shell element parallel to the middle surface 1s in a sbtate of
plane stress., The intenslty of stress in thils layer will be

#"Uprugo~plasticheskaya Ustoichivost Plasteen." Prikladnays .-
Matematike i Mekhanika X, 1946, pp 623-638. : .
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\/Xx? + Y2 = LTy w K2 (1.1)

The sgtate of strain of .the element 1e dotermined by the
components of theé tensor of ‘the strains exx’ yy" and Oy

since the shears ey,, e.,, are small; but the relatlon to the

7%
strain e,, may be found from the condition of constant volume

of the elewent,
Oxx + Oyy + 04y = 0 ' (1.2)

.The intensity of strain in this *aye” of the material 1s given
by the formuls ..

e +%{~~e 2 (1.3)

In sgreement with the laws for the elasticity and plasticity
of materials the gtresses and strains are connected by the relations

[0 ' . : BF o ¢
SR R P NS =y
Sx = XX 5- Yy_ = ;—; exx uy = XX - . e vy X,Y == 381 exy

Here oy = ci(ei) is determined for each material as a function
of ey. The properties of this function are ag follows, Within
the elastic.limit, that is, for o; £ o' where o' 1is a physical
congtant, Hooke's Law 04 = Eey aiwdys holds. Beyond the elastlc
limit o4 = ¢(eg) 1is 2 certain curve (fig. 2), If at a certain
instant of time there occur infin:. tely Sma]l veriations from the
state of strain, that ig, the guantities e . « » Yeceive

XX
increments Beyy . . ., then the increments of stress below the
elastic limit are glven by the Tormulae (1.4) by setiting o; = Eei.

Beyond the elastic limit the increments of stress,for. 881j> 0 are
given by formulae (1.4) in accordance with the curve oy =0(eyq),
but for ey <0 insaccordence with the law of unloading o3 = Eei.
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The problem of the stabillty of shells (plates) is stated as

- follows: Given a shell under o glven system of applied forces

and with the states of stress and strain known., Required, the
critical value of the externmal forces for which, at the sams time,
there 1s equilibrium with other possible states of straln 1nfinitely
close :to the orlginal state, .

Let the change in the first and second quadratic Torm.of the
middle surface of the shell relative to the given squilibrium
position be characterized by the parzmeters el,‘ 62, 263 and

Xl’ X T vwhere €15 6, are lenpth ratios and 263 is the

2?2 e
shear In the middle sur?ace in the x,¥y plane, and Xs XQ, T

are changes In curvature and twist, According to the Kirchoff
hypothesis the increments in length and shear at s distance =z
from the middle surfece will be

Bopy = 61 = 2l Begr =, -~ X, Doy = 2e, - 27 (1.5)

We seek the stress increments corresponding to the strains (1
For this it 1s necessery to take the varlations of relationg (1,L),
The varlation of the intensity of straln may be found by making use
of (1,5), bdut ¢fterwnrd we write for the variation of the work of the
internal forces gy B & in terms of the stress comnonents,

0y Bey = Iybo, + Y Bor o 4 X Bo (1.6)

xx y Xy

We introduce the nondimensional gquantitles

1

X ¥ vy h ) h h
* —_ K = H o e, K F m e N D Hom e L7
. XX. = » Yy s X}" N )('1 5 19 X2 3 /u:,.zg i 5 T ( * )

vhere h 1s the shell thickness, Then in agreement with (1.1)

v

')2 2 Y . s = |
B+ X2 - XL 43X 2

From (1.6) and (1,5) we have

Boy =€ — z¥X¥ = ¢ - gX (1.8)
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where

=X *QI + Y *é r OX_%e X oo T X ¥ 4 Y ®¥ % . OX_ HT¥
(l.;)

X = Xx*xi * Yy*xg + G *T i

For the veriation of formulae (1.4) we note that

i
B = = o | = - —= | B
Gi ei €3 dCi 1
oy doi
in which by the properties of the curve o3 = @(ei), — =20,
1 dei

We denote by 2o = Zo¥ % the coordinate of the layer for which

the intensity of strain is unchanged (Be; = 0) during ingtabllity.
It is clear that

7z =£, gz %=L (1.10)
X'?(‘

The variations of formulae (1.!!) have the form

3

/hj dgi C oy
a {3 L lg #{g¥ - 3 .,.(e, — A% %)
B &?i ey ) x ( o*) + COSANE SR z

04 dciﬁ\ 04

O I S Y € A R, - % e(-) >

88y 5 5o ) % (z zo%) + 5 (62 e (1.11)
AN

s ddi : ng
S = |wm — == X _ENH(2* - 2 ¥ - (e - T*z*)
y . ( o} ) + 361 3

-’

All quantities entering into the right-hand side of these equations
except the strains and the curvatures are known, since the original
state of stress of the shell (vhose ctability is sought) 1s supposed
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9y do

given. The quantit*es E,B'=s —, E" = ——i ére shown in figure 2

ey’ dei

ag tangents of angles, Young's modulus being constant buL E’ and
E" depending on the state of stress,

Before instability the shell may find 1tself wholly beyond the
elastic limit, or it may have elastic regions, -elasto-plagtic reglons,
and purely plastic regions. If the state of stress i momentless,
then the region of elasto-plastic strains, that 1s, the region where
part of the shell thickness is elastic, part plastic, is absent. In
this paper we confine ourselves 1o the detailed stability investigation
of compressed plates in which the state of stress is always momentless
before instability. Hence we shall suppose that in the ghells
congidered below the region of elasto-plastic strain is misging,
before buckling (this assumption is not essential).

After instability the reglon of the shell where the stress was
originally elastic will be, generally speaking, elasticqlly deformed,
gince the strain variations are agsumed infinitesimal. The region of
purely plastic strain will be, generally spesking, resolved after
buckling into two — one remaining purely plastic, the other elasto~
plastic, Figure 3 ghows a section normal to a ghell wilth the three
designated reglons (tho plastic region after instabiliby iz shaded).

Let the surface gz = gz represent the boundary between the

o}

reglons, one of which is elastic after instability, the other plastib.

For 1ts determination we shall suppose that in the elasto-plastic

zone, the plastic zone adjoins the shell surface 2 = + f and. the

elasgtic zone wkwch originates as a resulu of unloadlng addovns the
surface 2z = — e

In the region of elastic strain snd in the zone of unloading
(z€ = o) formulae (1.11) teke the form g

88y = B¢y — Xy2) 38, = Ele,. — x,2) 8%, Ble, ~T2z)  (1.12)

y =

wimn

2 3

In the region of plastic strain and in the zone of ]oad1ng4 (z> 3,)
off the elasto—plastic region, these formulee may be presented in the

- Torm

Lrpom (1.12) end (1.13) it 1s seen that the variatiOHS'?ésx'. . s

on the boundary = are continuvous in the case whers the originallstate

, of stress corresponds to the begimning of flow, and equally so when, as

e result of variation, the state of stress changes in proportion to the
original state {reference 2),.




6 ~HACA TM No -.1188

~

85, = (B! — E") 5. %(z = 25) + Et(ey = ¥y2) .

88y = (B' — E") Sy*‘X(z - z5) + E‘*‘(fa -‘Xév/:) L (1.13)
S _ r _ . . - g 'y - .

axy._ (B* ~ E") X,z = z,) * 3.TE (eg ~T2)

Wé‘proceed to the derivation of expreséions for forces and
moments arising in the shell during Instability. For their doter—
mination we have ' '

’71’1- : | ?h ' ':": -
8Ty = | , 8K dz ST, = | - BY dz 5S = J , 8K, dz
=5 VT3 T3
1 xl_—- “~ l:‘l- h
&M, = / y Bz dn By = 8T,z dz SE =) . SEzdz
-2 - J-%

Tn the region of purely plastic strains we obtain for the forces, in
agreement with (1.,13):

1 : 1 _ o %
L5522 ¢ AT e (1.1%)
1 . E'h 9) 3 5
r— 6&‘ - l‘- 6T ) = ¢ — X'S -X-€
_— 2 o 1 2 y
and for the moments
...lf_..a _}.51\4 — \_/'.*..)\,'S X,
o Ml 5 o) = X 85X 5
! : s
‘ e BH =~ 2T 4 AX X (1,15)
b 3 3 A

i

. 1.\
— oMy - 5 8M1>

“ % 19 %X
_~ » + A y
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where
1.3 L 1 i
DY = ?—il._ DR ==E——-—-—-—-' = E" - o '.(1.16)
.9 B! - |
he region of elagt c strain B formulae (l 14) and

(1.15) hold, only Ef = E" = E, A$

Thus in the two regionse, the forces are linear functions only
1+ € Y and 263, the middle surface sghear, a.nd the moments

are linear functions only of the changes in curvature. ‘

In the region of elagto-plastic strains, the stresses BXx . e

have different expressions for =z > Zo, &nd for z < z,. IHence,

o
the integrals in the expressions for the “orces and moments must

be split Into two parts. For example,
I‘? S T

1 = | 5 -
SMJ_-—-é-SM?—/”honzdz- _ Sszd.z-t- SSdez
2 .

3
NI

O‘

'J

AVER=)
v

* -

in which for the region 2z 2 2z 2 —g- we take 05y according to

(1.12) and for the region % 2 2 2 z,, according to (1.13). As

a result of these calculations we obtain for the forces

o~

1 —z %2
1 _ *
(5'111_551’2) =LE+E' + (E - E") Zo*] €q 5 (E-—E')f»

5100

Ly .
+us*(l z*)gx*
8T . — % 87 ;-I~:ﬁ‘+?E'+(E—E')z41e ;M(E;E')X*
22 1) TL” 2 ) 2

[~ 1]

‘ E' "'E"
+ :

% Dy %
Sy (1 =z *¥)°X

1o g

%5S='§'[E+E' + (E-E')Zo‘*-l €3+ 3 (E—-E*)T*

B! - E" o« 212 ¥
* > Xy (l—-zo) X

> (1.17)
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and for the moments -
12 (. 1 R RS 2
;’2’ @Ml -3 SMQ) =i [E + B! + (B ".-"E')ZO’“3]X1* ~ %(E - BN (1 - zo*‘)el

+ E'_.;_}il'l (1 = zo*)2 (2+Zoy) s}'c-xx*
12 1 | T : 2
< (Esm2 -5 SM;>= - [# + E' 4+ (B —-E')zoké]xéf-— g{g - E')(}‘— zo*'>62
gt

— E" . 2 . : .
+ ---é--- (L - z%)"(2 + zo*)Sy*XN

-l—‘?‘-8H=-»§[‘rB+E'+(E-E’)zO%3

% - (B -E')<} - zc*é>63

' Y - joll . ’ ) .
+ — (1 - 2,422 + 2o ¥ )X *x*

(1.18)

) The dependency between forces and streins is nonlinear, since s
| z,* enters into the formula end from (1.10) it depends on the strains, '
" From this fact proceed all the difficulties of solution 6f problems

in shell stability beyond the elestic limit, ' g

Further, it 1is essentiél that the or‘dina’cev zo*' depending on
both the changes in curvature _Xl’ ><,2, T and on the strains €5
€as €35 be 'expressed only in the changes ip curvature and the
forces 8T;, &Tp, 8S. Multiplying the first equation of (1.17)
by Xx*, the second by Yy*, the third by 3Xy“* and. adding, we

getb

Sp*Ty + S ¥OT, + 3X XS

ML - 26%)2 + ha ¥~ b =0 (1.19)

K¢
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By introduction of the notation { for the ratio of the ‘thick—

.nessg hpo,of thg_plagt;qﬁlgypr_tont@e‘th;oknogé of the shell

BN -
g=.;f.P;= :" | (1.20)

R

and solving equation (1.19) for . ¢, wve gst

(= E —JEE(L 2 9) 1=y =M )

~! m , 1.21)
E _Ell . X (
wh
ore . . . dci
S ¥8T. 4+ S_¥8T_ 4+ 3X_*BS " dey
by X -
o = L v TV oa=E=E a1 (1.2
1 -2 Bh X E E

Formulae (l 17, (l 18) are appreciably ‘simplified (otherwise
conserving the principal compllcations) if we consider gnly the
begimming of flow, that 1s, we .suppose that the shell material
before instability exceeds the elastic limit very slightly. In’
this case

E --E"
B

E' = E A=A =

Therefore, in the nobption of (l 20) the corresponding formulae
have the form for the forces

-

1 1 . Moo w2y
E (%Pl ~ 2 B0 ) =e) + = 8, ¥ =X

(1.23)

=i
/Eg\
o
i
n =
4G
-
S
i
o
N
+
{P"
jo
n
*
ve
o
=4
-
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for the moments - -~

'-13-‘-5 (sml -} 8M2> - oy xsx*g'?( 3~ 2t )x

v

N

b 1 _ -
55 QsM2 -3 aMl) = "Xe + xsy*c (3 - 20)X (1L.2k)

A BH = = ST 4 AX_* X
iRt N (3 2l)X

=y

where D 1is the usual stiffness for Poisson's ratio equal to 1/2.
2. THE STABILITY OF COMPRESSED PIATES

Denoting the bending of the plate during instability by w(x,¥)
and the displacements of points in the middle surface projected in
the x,y directions by u(x,y), v(x,y), respectively, we have
expressions Tor the changes in curvature Xl’ X2’ 7, and the

strains €1, ¢€o, 63: =
2
><1 = _5_22’_ X = .a_%i T =._5 w
x> ¢ wR aoy
. > (2.1)
ou v 1/du o
€. & e = — € = o | —
1 E dy 3 2\0y ¥ Jx

ot

The forces epplied in the middle surface before ingtability
may be written in the following form:

Ty = hoX ™ T2 = hciYy* S = ho'iXy%
and thelr projeétion on the Z-axis after ingtability in the form

Tlxl + T2X2 + 257 = hogX
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Therefore, the condition of equilibriwm of all forces applied to an
element and projected on the z—axis, glives

aeﬁM .- . aeaM - . e
.Bxel + ;; ay 3 22 + hcix = 0 (2.2)
Y

The condition of equilibrium of the middle surface forces after
instability will be

oBT o5T

1 ) 58 2 358 L . -
&x Oy o7 | o (2.3)

Finally, the compatibility condition for the strains has the

form
5261 3¢ e
— + 2. 1=0 (2.4)
W2 Ox dy .

The combination of differential equations (2.2), (2,3), and (2.4)
18 neceasary and sufficlent for the solutlon of the problem of
stability, if the corresponding boundary conditions are set up.
Indeed, according to (1.14k), or to (1.24) and (1.20), the strains
€15 62, e3 may be expressed in terms of the forces 8T, STQ, &S

and the curvatures ¥ (bending w), following which the moments
&My, B8Mp, BH are functions of these same four arguments. Thus

the problem reduces itself to four differential equations with four
unknown functions, of which (2.2) is of the Bryan type, and (2.3),
(2.4) are of the type of equations in plane problems.

In the region of purely plastic strain of the plate, (that 1s,
such that the whole thickness, plastic before instability, remains
plastic after instabllity), the system of differential equations
is resolved Into two. For simpliclty we consider only the case
of the bveginning of flow. Substitution of ‘the values of 3M;, B8M

SHE from (1.15) into (2.2) gives a differemtial equation for w
of the Bryan type:

21

ho 2 ) o
Ve - —2xo 330 X ¥+ 2 0 X% + -a—-; L% M (2.5)
D A\ ox? Xx dy dy~ '
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where, in agreement with (1.9) and (2.1)

X = X * P, ex*agw Y*-a-l"’p- ‘ (2.6)
ax® X dy -'?’ 3y°

The two boundary conditions on w agree with tne ugual
boundary conditlons for the Bryan equation.:

Solving equations (1.1%) for the strains, we get

1 iy x * 8T ' * -l
STl -3 STQ) b ———— (SX STl + Sy 8?2 + 3Xy 35S

Gl =
Eh (1 - A\)BEh

i

M
fl

- A8 % ‘

1 1 Y )

— |87, — = 3T, |} + S_*8T, + S *T_ + 3X_*3sp (2.7)
1

En \ © 2 l) (1 - 2)En \* o2 v

PX* / - o
2
263 _ 385 + J S,*B’I‘l + Své'rgTr) + BX‘I*SS\/

Eh (l — )‘)Eh v o .C.. Y, Py

‘J.

Equations (2.3) are satisfied if the stress f‘v.notion- F - is introduced:

- - - - A (2.8)
Eh 32 Eh 2 EBh dx . )

following which, analogous to (2.6) we denocte

B?F G ¥

t —— — 3X_* - (2.9)
o i oxe T s - ‘
we obtaln the conrpatlbllity conditlon for strain in the Torm
% N
oM = - -5-5 S.* + &5 %3 XV*) (2.10)
dy axg I xdy / 1 - 7»
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- In order’ to write ‘the béundary- conditions for this. equation,

13

it 15 necessary’ to Gompiite the variations’of the:normal- force 8Ty,

.and of the tangenbial force.: SSV ona: certain curvilinear contour’

in the middle surfage of the- plate,

If the outward normal VY and the tangent 8 to the'contour

congtltute a:coordinate : isystem such that by rotation.the positive
direction:of V.. .coincides with that.of .y. .and. the positive‘.

- direction: of 8" coincides. with thak:of, -x. and if the angle

between the normal and the x—axie 1s denoted by o {f1g. 4), f 

thgn our quantities have the known expresslons

Lo éﬂi A+ ST 1 -, ar fan
8Ty = + 2 sos ?a + SS sin 20
soo2 ., 2 o .
L ’
aTl — §Tp Y. o . . . . ’.‘-' ’“'
BEy = — — gin 20 ~ 38 cos 2

-

(2.11)

The purely plastic reglon of the plate may be bounded by a

contonr, part. of which coincides with-the.boundary of the plate,
the part adjoins the elasto-plastic region For. the formulation

of the stabllity problem In the flrst part the boundary conditions

_have the form Pt

8T, = 8S, = 0 o (2.12)

and in the second Dart 6T 5:§ must be continuous

It is easy to show that durlng 1ns ablllty the entlre nlate

may not remain in the purely nlasbic qtate that is, an elasto~°ff

plestic reglon may come into belng, Indeed going back. .we shall

have the uniform boundary conditions (2.12) on all external edges’

~of the plate., But the differential equations (2.3) and (2.4) for

conditiona (2.7) will be also. linear and homogeneous and so will
have the unique solution

8Ty = BT, =85 =0

Tt follows from (2.7) ﬁhat  el«=.62 = ¢, g,o;f from which on

the basis of (1.9) and (1.10), 2z, =0. But 2z =z  1s the
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boundary between the elastic and plastic zones through the thickness

of the plate and the condition zo = O specifles that the middle

surface is this boundary. It follows that a given region of a plate
1s not purely plastic, but elasto~plastic, which contradicts the
assumption.

During instability of a plate beyond the elastic 1limit it will
either go completely over to the elasto-plastic state or there will
remain purely plastlc regions in it, which are not diffused through-
out the plate.

Tn the region of elasto-plastic strains, equation (2.2) on the
basis of expressions (1.24) may be presented in the form

ho. o ~2 N2
P et x =3[ x x4 2l x*+-a--Y* M2(3 - 2)x  (2.13)
b M\ * ox dy v dy? o .

in which, as in equations (2.5), (2.10), the operator in parenthesis
acts like o multiplier on the quantity to its right.

The condition of compatibllity of gtrain (2 4) on the basis of
(1.23) has the form

VAF _h 52 52 52

___S*+_____S%r_3

2\ay2 ¥ w7 o dy

2

3% X
X, AL (2.1h)

where the stress function F ig determined by formulae (2.8). The
value of ¢, the ratio of the thickness of the plastic layer to
the plate thickness, enters into equations (2.13) and (2.1k4),
therefore they show compatibility; this quantity ¢ 1is expressed
by formula (1.21) in which the function o is, if use 1s made of
the notation (2.9)

A
1 -2

(2.15)

S

|
=g [hv]
>t

Equations (2.13), (2.14) agree with the corresponding equations
(2.5) and (2.10) at the boundary of the purely plastic and the elasto-
plastic regions. Indeed, at this boundary, besides contlnuity in
the values of the forces 8Ty, &Sy, the moments &My, BH,*

(where &H,' 1s -the rotational moment according to the boundary
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conditions of Kirchoff), the bending w and the slope of the tahgent

- plane, there must also hold the condition.

or

T (2.16)

From (1.21) for this condition we have @ = -A and t.= P el A%

2.
following which the remarked coincidence of the equations is easily
ghown, - . o

The boundary conditions for equations (2.13), (2.14) on the
elagto—plastic part of the contour, coinciding with ‘the plate contour,

yleld the usval requirement 8Ty = 83y = O and two conditions relating

to the bendingA Ve

Condition (2.15) or

P R0 N (2.17)

=

represents in itself the equation of the boundary between the pufely _
plastic and the elastp-plastic reglons.

The possibility of purely plastic regions arising at the same
with the elasto-plastic reglons follows from the fact that. the
value of * { in agreement with (1.21) and (2.15) mey teke on values
not lying in the interval 1 > C‘;Oq Certain examples are given
below of exact solutions of the stability of plates. and, in
particular, the problem of the compressed plate freely supported
along two sides; the edges of the plate near the free supports,
after instability, remain in the purely plastic state.

3. EXAMPLES OF EXACT SOLUTIONS OF PROBIEMS
IN THE STABILITY OF PLATES
The integration of the system of differential equetions (2.13)

and (2.14) in the elasto~plastic region, and of (2.5) and (2.10) in
the plastic region with an undetermined boundary between them given
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by (2.16), is fraught with significant mathematical diffieulties.
As was shown in 1, the stability problem simplifies when the
variations of the forces in the middle surface are zero every—
vwhere. In that case the relative thickness & of the plastic
layer is a known function of the coordinates, since from (1.22)

¢ = 0 and consequently

(3.1)

Tf the state of stress of the plate before ingtability is
wniform, the value of ¢ will be:constant, since in (1.22)

d.o'i
EE; will be the same for the whole nlate.

We call those solutions of stability problems approximate
for which the variations STi, 5T2, 85 of the fcrces aré

identically zero. Thus, the equations (2.3) of equilibrium and
the boundary conditions (2.12) are satisfied, bub, except in
special cases, the compatibility condition (2.4) is not satisfied.
The simplicity of such a solution arises from the fact that 1n
equetion (2.13) the value of § is known and given by formula
(3.1), as a result of which this equation becomes linear with
congtant or variable coefficients. It closely resembles the
equation for the elastic stability of an anisotropic plate.

The exact solutions of the system (2.13), (2.14) are undoubtedly
of interest in thelr own right, but for us they have significance
because they can be made use of to estimate the degree of exactness
of approximate solutions.

We discuss a certain class of exact solutions of stabillty
problems for uniformly compressed plates of arbitrary shape and the
golution for a rectangular plate in the case when buckling into a
cylindrical shape is possible. '

a, Stability of a Uniformly Compressed

Plate of Arbitrary Shape (Fig. U4)

Tn this case the state of stress of the plate before instabllity
is uniform and given by the formulae

X, =Y, =03, Ey=0 : (3.2)
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vhere o, 18 the cOmpressive streés along the edge and 1s also the
.uniform stresa intensity at any point in the plate. The resulting
stresses according to (1. 7) end (1.4) will e T

¥* = ¥ o e = * W = .
X¥ = ¥y 1L X*=0 §*=8 2 (3.3)

‘For the values of X and t we have the expressions from (2.6)
end (2 9)

X = ~Sw t:-% - (3.4)

Equation (2. lh) takes the form
vﬁ( —l}lggx) 0 (3.5)

Neglecting the harmemnic function, we obtain a class of exact solutions

as a result of which the value of ¢ in (2.15) is expressed in terms
of ¢, and from (1.2) we find

I P T -
£ = — |1 \/ = const. (3.7)

The Fundamental differential equation of stability (2.13) 1a now
linear with constant coefficients and has the simple form

. ] )
[1-%&@(3_2@)va+ ;1vW_o (3.8)

Tte solution has been much studied for different shapes of
plates and for different boundary conditions, although in connectlon
with the elastic stability of compressed plates.
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~ The value of' ¢ (3.7) s 1little. different from the approximatlon
(3.1), end cheracterizes the degree of deviation :of the exact solution

from the approximate .

In the general case we have from (3.5)
. ah (.2 \ '
T = == X+ T .
where Iy is an arbitrery harmonic function. For continuoﬁs circular

plates, for exemple, : Fl i3 a constant. According to (2.15) and (1.21)

we now have an expression for ¢ in terms of X

o)
' 3)"'_']'-l D L .
€= ~\/1-433”.+ = T (3.10)
ST AN by 16X

following which equation (2.13), having in the glven case the form

. - ng ) .
v’ﬂl - %?x §°~(3'- eg)j X —51 %= 0 (3.11)

_has only ome unknown function X. By use of relations (3.4) it may
" be integrated once ' S .

i ‘ oo ho, '
il-—%}-@?(js—-eg)i\?gw-;-_?)iw:l‘ (3.12)

L 2

where P2 is a new harmonic function, also a constant for continuous

circular plates, insofar as w and ng must be finite 'in the middle.

Equation (3.12), in view of (3.10), may be solved for ‘Vew, after

which the problem reduces to the integration of only one linear partial
- differential equation of the second order. (for circular plates)

2
Vw = ‘D(W,I'l,l’g)

PN

The stress function: F 1s now determinad,,iﬂ accordance with (3.9)
and (3.t), from the Poisson differential equation S
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V= - (Bxe ) , (3.13)

Ag we ses, the problem of the stabillity of clvcular plates may
be solved In comparstively eimple fashion through to the end. The

-detalls of a similar calculation willl be clarified helow for the

example of a rectangular plate compressed in one direction.

b. Stabllity of a Rectangular Plate Under the
. Condition of Plane Strain (Fig. 5)

Such & case occura if, when a rectangular plate of length 1 is
compressed in the x~directlion, the width b in the y—lirection cannot
change as a result of walls along the bounderies v =0 and y = b,

The plane x = O ghown in figure 5, where (¢ = 2¢ and L = 27, will
evidently be a plane of symmstry of strains.

We assume. the buckling to result in a cylindrical shape. In such
a case,according to the conditions of the problem, we have for the
stregses before instabllity ’

1. \'I; ]
. I
XX—--—p Yy:-é-Xx Xy=0 Ui==-—-—-gp
> (3.14)
X*=__3,, I T SV B
x /3 y Vv3ioooF 2 y
After buckling, w =w(x), ¢, = ¢y = O
From equations (1.24) we have
58S = 0 T, = = 8T
' 27 o 71

Since, in accordance with the eguations of equilibrium. 7T = const.,

and 8Ty = O from the condition at the edge x = %, then we have

the case 8T, = oT, 285 =0, In consequence, the apnroximate
solution, as was noted at the beginning of 3, here becomes exact.
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The thickness ratio § 'for the plastic layer is a constant
and is determined by formula (3.1). The stability equation (2.13)
takes the form

L _ o .
ad*w + hp v _ 0 | | (3.15)

axh DE. - AM3(3 - 2(;)] ax®

If the relative Kirman modulus, expressed by

K = des = h.(l : 7\'-—---_)_-_ (3.16)
- Jda, (1 + /1 -2)°2
. i = _
(ﬁ +\/ Gy -

is introduced, then we get from (3.1)

N Rt N > (3.17)

following which we may simplify the expression for the parameter in
equation (3.15) ~

7% = s - (3.18)

DL -a2(3 - 28)] Dk

Since k =1 up to the elastic limit, and k =.0 1n a small
area where there is flow of the material, and since the character-
istic value of the parameter <+ must be the same in elastic and in
plastic problems, then it follows from (3.18) that the critical
stress corresponding to the small area of flow, is zero,

Tt 1is intevesting to note that the Karman problem may be
considered as a limiting case of the gtability of a rectangular
plate compresged in one direction, of small width b, for which
the parameter 7y will have the expression

2, o
3Dk

7
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and consequently the ¢ritical stress 1s zero at the small area of
flow: "As seen from the preceding and following examples of exact
solutiong, the total logs of loamd-carrying ebility of a plate,
predicted in the Karman problem, does not occur, generally speaking.
This circumstance has already been noted (reference 1).

c. The Stability of 8, Rectangﬁlar Plate Compressed
In One Direction (Fig. 5)

We shall suppose that the rectangular plate, sufficiently long
in the y-direction and compressed only in the x—direction, buckles
into a cylindrical shape. In this case A

o (3.19)

% : 3
N * o & * = o ¥ =X % =0
Sx 1 . ] X = -] Y‘ X

4

By the conditions of the problem, all sections of the plate
y = const. remsin plane after buckling and so we have

6y =0 €, = const. (3.20)

on the basis of which from (1.24), 88 = 0. Besides this, 8T, = 0

from the boundary conditlion at the edges x = % L amg consequently

it follows from (2.3) that 8T, = O everywhere.

Since there are no forces in the y-direction, we must use the

condition
. 42

/ 8T, dx = 0 T (3.21)

From théisecond eduation of fhe system (2.14) we have

PO P

&F .28 ¢ B2 , (3.22)
dxe, Ih 2 L 1
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gince X.=,—X1, It is not difficult to convince onels gelf. that

(3.22) is the integral of equation: (2.14), " The function @, by
which is found the value of §{ from (1,21), here has the form

AT B e - - 2 2
2 A
= 5 = - 2 + g (3’23)
(l - A)Eh X] (l - h)th. h(l'w )
The bending moment in any sectfon ig
8M; = ~D|1 — 2 MZ(3 =2L) x ' (3.2Y)
* I MR A : \2ee

and so the boundary condition on the edges x =1 % is X, = 0.

Tt is clear from (3.23) that X, cannot be zero in the elasto-
plastic region since ¢, # 0 (this follows from the constancy of
sign of ggxl, positive along the entire plate, necessitaﬁing

¢, # 0 to satisfy condition (3.22)). Thus the elasto-plastic
region does not go up to the edges of the plate and stops at the
gection x = % %. The region adjoining this to the edge will be
purely plastic., Indeed, since §2X ig pogitive, then ¢, is also

positive. It rollows from (2.7) that in the purely plastic and in
the purely elastic regions the forece 5T2. hag the same sign as

¢p, that is, is a tensile force, But 1f, to the plate, compressed .

beyond the elastic limit in the x-direction, there is applied a
tensile force in the y-direction, then the plate remains in the
plastic state. One may convince one's sélf of this by formally
calculating the value of Bes; according to (1.8), which at the
edges is equal to ), but the strain ¢, eaccording to (2.7)

is negative, and so the value of Bes will be positive, that is,
plastic strains before buckling remain plastic after buckling.

From (1.21) and (3.23) we now have.

hX

1 1 \ 2
— = e, p(£) =~ b+ 8L - 3N (3.25)
T |
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i From this we find the lower limit to the value of &(p > 0)

- 1---  (3.26)

The fundamental ‘differentisl equation of stabillty (2.13) tekes the

form
a2 3 3 42 ] . : ho‘i _
| L ;’é‘!vlwﬂhg (3-—2§) y .+-5—~Xl=0 .(3,2()
g - o
By introduction of the notation
a(t) = b - o2 4+ 6ne3 g=? =2 (3.28)
|  we write equation (3.27) in the form
? .
a= 2
I T : - (3.29)

where -1 1s the basic parameter determining the critical stress

) hzeo .
T p— | (3.30)

» The integral of equation (3.29) may be obtained by quedratures.
Through introduction of the notation

B(L) = o k=1t 4 12&2 - k3

(3.31)
(b - &+ 372

we obtain as a result

71

S 6F - B[
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In the purely plastic reglon we have for the force 5T2 ahd. the
moment SMl, in agreement with the results of 2 and (3.19):

Mo (1 -2

Bhoh -

amli - - D( - %‘-) % (3.33)

The fundamental differential equation takes the form

1 P %
ate b~ 3

-0 ‘ (3.34)

The solution, satlsfying the condition %y = 0 at the end ¢ =1,
~is written in the form

1 -
X = 036? sin Eﬁ::::ii (3.35)

in which as a result of SJmmetrv we consider only deflections in the
right half of the plate (x % 0).

For determination of the five uvndetermined constants namely,
the three integration constants Cl, Co. ‘03, the boundary

coordinate o and the criticasl number u. we may, besides
equation (3.21), write four more conditions: Conditions of symmetry

£ =0 %—%=o (3.36)

b= t=1 (3.37)

two continuity conditions, of moment and shear force, which in
accordance with (3.25) and (3.35) take the form

Cg sin u(l - U> - 3 cos u(%_:;m) = e (3.38)

S wh- Jh-m hoa th(l)



NACA TM No. 1188 25

The constant is:not necessary and doeé not enter the

N
3 : 2 b
; '”"““‘conditionSwingofar-as.they1are‘indepen@ang qf ggw and i,

) €D
. By making use of the prescribed conditions and 1ntroducing
a new unknown {., ' the relative thickness of the plastic'layer

at x =0, wo get for the values of u -and L — o (the velative
length of the purely plastic part) the following formulae

BT SNSS NS5 (3.39)
J2(1 =) Ao M
where L and M are the 1ntegrals .
- M g g e " M=/m(€°) QSL B (540
JR(1) \/R(é ) = R() JR  VREL) -RE) T

in which the value of § is determined 5y the relation
2 (LT ). (s — Y [RELY - RO} (3:0)

\/2(1 - A) L %

As was already establighed, the value of 1 —a is pogitive,
therefore the integral ‘L must be positive, and for this 1t is
required that 1~ 20 + x§2 > 0, that is, c

: R '-Q'O%é:'lf- \/l"—'-.i"“ L S -':'"(3s.h2)

By considering the estimate (3.26), whloh is alpo 1easonable for
§o, wo soe that this quantity is contained within narrow limits and
close to the approximate value' (3.1). It follows from this that the
critical stress will aiffer only &lightly from. the approx1mate value,
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d. Approximate Solution of the Problem for a Plate
in a Uniform State of Stress Before Buckling

Tn this case the stress components X, Yy,
stress intehsity“ oy are bopstant evérywhere; the.quantity ¥

will also be constant, and hence -{ by (3.1).

and 'X? and the

The x eand y axes in a given case may be 8o chosen that
the va stress is zero (principal axes of gtress). The fundamental

stability equation (2.13) tekes the form

1ok “ . LY
3 20 Ow 3 w
1 - 2(1 - k)X * -—-—+2’1--(1—k)XmY*
[ L X J ax“. B L Xy | 2072
R ho, | : 2
3 21w i . 0% . oW
+ |1 =201 = k)Y * j 2 e | XWX §
| i v ayE D X axg ¥ ayg (3 3)

in which the generalized Karmén modulus is introduced in accordance
with formulae (3.16) and (3.17), since the relation

M2(3 -20) =1 -k

holds.

The coefficients in equation (3.43) are all positive, since
the largest value of each of the gquantities X.*, Yy* is

Eﬁ: and 1 >k >0,

/3 .
Hence, the problem may be solved as a linear differential

equation of the Bryan type with constant coefficients, and in

difficulty is little different from the corresponding elastic

case. :

Translated by E. 2. Stowell
National Advisory Committee
for Aeronautics '
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Figure 2.

Figure 3.

29







; IIIII!IWIWIIHIH\llil\ININIINIINIIIIIUNIHIIIIIIHHI

176 01441 5708




